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Flash vacuum pyrolysis of N-(pchlorophenoxymethy1)azoles (e.g. 2 and 3) gives ring expanded products (e.g. 4 and 8) 
formed via N-heteroarylmethyl radicals (e.g. 1 and 6); the mechanism of ring expansion generally involves a novel 
'walk'-rearrangement of the radical centre. 

There is considerable current interest in ring-expansion 
reactions of carbon-centred radicals, generated in solution 
under standard reductive conditions.1 We describe here a 
gas-phase variant of these processes which leads to oxidative 
ring-expansion of N-heteroarylmethyl radicals 1 via novel 
'walk' rearrangements of the intermediates. 

The radicals 1 were generated (along with the p-chloro- 
phenoxyl radical) by flash vacuum pyrolysis (FVP) of the 
corresponding N-(4-chlorophenoxy)methyl derivative 2 at 
700 "C. The precursors 2-t were themselves obtained in ca. 
60% yield by alkylation of the parent heterocycle using 
a,4-dichloroanisole under basic conditions in dimethyl sulfox- 
ide solution.* 13C-Labelled dichloroanisole was obtained by 
the method shown in Scheme 1.374 
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Scheme 1 Reagents and conditions: i ,  13CH31, K2C03, dimethylfor- 
mamide; ii, PC15, heat 
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FVP of the indolyl derivative 3 at 700-800 "C (10-2 Torr$) 
gives rise to p-chlorophenol (90%) as expected, and to 
quinoline 4, (66%) as the only ring-expanded product. No 
isoquinoline 5 could be detected. The expansion process is 
therefore initiated exclusively by attack of the N-indolyl- 
methyl radical 6 at the 2-position of the indole ring (Scheme 2 
route a). Well-precedented attack at the 7a-position by a 
neophyl-type rearrangement536 (Scheme 2 route b) which 
would give rise to isoquinoline, clearly does not occur in this 
case. The mechanism was confirmed by pyrolysis of a 
l3C-labelled derivative (highlighted atoms in Scheme 2), and, 
as predicted, the majority of the label (>90%) is found at C-2 
of the quinoline (13C NMR) . 

Although ring-expansion of the N-pyrrolylmethyl radical 7 
similarly gives pyridine (8; 59%), the detailed mechanism of 
the rearrangement as revealed by the labelling experiment 
(13C NMR), differs significantly from the N-indolylmethyl 
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t All new compounds were characterised by their spectra and by 
elemental analysis. $ 1  Torr = 133 Pa. 
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case. Surprisingly, the label is distributed over all positions of 
the pyridine ring, with the majority located at the 3-position. 
This result may be explained by a ‘walk’-rearrangement of the 
initial radical (Scheme 3).0 The occurrence of such a 
rearrangement is consistent with the results of an EPR study 
of the hydrocarbon analogue 9, in which exocyclic cleavage 
(bond p- leading to the ‘walk’) is known to be favoured over 
endocyclic cleavage (bond q- leading to ring expansion).g In 
the pyrrolyl case, ring expansion by route c (Scheme 3) is 
apparently most favourable, and indeed it is known that 
drastic pyrolysis of N-alkylpyrroles under radical-chain condi- 
tions9.10 often gives 3-substituted pyridines as the major 
ring-expanded product. 

§ A 1,5-shift of the N-substituent prior to radical formation could give 
a similar labelling pattern, but this is known to require much higher 
temperatures in our apparatus.’ 

A similar mechanism via the relatively disfavoured ortho- 
quinonoid intermediate 10 can explain residual label (<lo%) , 
found at the 3-position in the indolylmethyl experiment. 

Ring expansion of the N-azolylmethyl radicals 11 and 12 
produced contrasting results (Scheme 4). Thus the N-pyraz- 
olylmethyl radical 11 expands regiospecifically to give pyrimi- 
dine 13 rather than pyridazine 14 and this is probably due to 
the cleavage of the particularly weak N-N bond of the 
diaziridinyl intermediate 15. These results confirm that 11 is a 
viable intermediate in the pyrolysis of dipyrazolylmethane ,11 

from which pyrimidine has also been obtained. In contrast, the 
N-imidazolylmethyl radical 12 yields both pyrimidine 13 and 
pyrazine 16 in 3.7 : 1.0 ratio. 
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